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Path Integral Monte Carlo Methods: 
Static- and Time-Correlation Functions 

Bruce J. Berne 1 

Path integral methods for simulating the structure, thermodynamic properties, 
and time-dependent response of simple quantum systems are reviewed. These 
methods are used to simulate the structure of an excess electron in a helium 
bath. 

1. I N T R O D U C T I O N  

Feynman's path integral formulation of quantum statistical mechanics (1) 
makes possible the computer simulation of quantum many-body systems of 
chemical and physical interest. (2) According to this formulation 2 the 
canonical partition function is 

where 

XI 

(1.1) 

fO ~h S[x(z)] = dzH[x(z)] (1.2) 

is the Euclidian action corresponding to the path x(z) in Euclidean (or 
imaginary) time z; H[x(z)]  is the path dependence of the Hamiltonian; 
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~ Dx(r) [ ' - ' ]  represents an integration over all paths starting at x (0 )=  x~ 
and ending at x(fih)= Xl. In the discrete path representation the Euclidean 
time r is discretized in units e = flh/P where P is an integer and the con- 
tinuous path x(r) is approximated by straight-line paths between neighbor- 
ing Euclidean times. This allows (1.1) to be expressed as 

{ mP ~e/2 
Q P = \ 2 ~ J  f ' " f  dXl '""dxee ~eP(xl ..... xe;~) (1.3) 

where x, = x(tBh/P), x, + e = xt, and 

1 P 
mP ~ ( x t - x , + l )  2 V(x,) 

~p(xl ..... xp; ~ ) -  2~2h 2 ,=1 + P  ,Z 1= 
(1.4) 

Since (1.3) is equivalent to the classical configurational partition function 
of P classical particles with potential q~p, the quantum system is said to be 
isomorphic to a classical P particle cyclic chain polymer in which each par- 
ticle t interacts with its neighbors t - 1  and t +  1 through a harmonic 
potential with force constant mP/hZfl 2, and each particle t experiences the 
potential V(x,)/P. Clearly Qp is an approximation to the true Q. It is easy 
to prove that Qp > Q and Q = limp ~ ~ Qp. In path integral simulations one 
empirically determines and uses that P beyond which the thermodynamic 
properties do not effectively change. Clearly the lower the temperature the 
larger P must be. 

The classical isomorphism can be simulated by Monte Carlo 
techniques. ~3) This method has already been applied to the study of quan- 
tum effects on liquid structure. For example, Thirumalai et al. used path- 
integral Monte Carlo (PIMC) to simulate liquid neon; ~4) later Wallqvist 
and Berne used PIMC to simulate quantum effects on the structure of 
oligomers of water and on liquid water~5( Bartholomew et al. ~6) have 
studied an excess electron in a fluid of He atoms; Wallqvist et al. have 
studied an excess electron in water clusters ~7) (also see the poster presented 
by D. Thirumalai in this conference) and in liquid water~7~; Rossky ~8~ has 
studied liquid water; and Sprik et al. ~9) have studied an excess electron in a 
hard sphere fluid. An alternative approach is to use molecular dynamics to 
evaluate path integrals (see below) as was done by Parinello and 
Rahman ~1~ to simulate an excess electron in a fused salt and recently by 
Rossky et al. ~11) to simulate an excess electron in liquid water. For a com- 
prehensive review see the paper by Berne and Thirumalai cited in Ref. 2. 

To use the classical isomorphism, configurations can be sampled from 
exp-~r ..... Xp; ~) thus generating a trajectory in configuration space. 
Estimators for various quantum observables can then be averaged over this 
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trajectory. Although this appears to be straightforward, (3) complications 
can arise. For  example, if one evaluates the internal energy from 

01n Qp 
< E } p -  (1.5) 

one finds that this can be expressed as 

<E>p=f dXl ..... dxeP(xl,...,xe;fl)ee(x,,...,xp, fl) (1.6) 

where 

1 f mP ,~P/2 e -/~#e(xL ....... p;~) 
e(x~,-.., xp; ~) = ~ \ 2 - ~ /  (1.7) 

is the classical isomorphic configurational distribution function and where 

P mR k (x , -  ) 2 + 1  k V(x,) (1.8) ep(Xl ..... xp; fi)-2fl 2f12h 2 Xt+l 
t = l  t = l  

is "an" energy estimator. (21 This consists of a part due to the kinetic energy 
and a part due to the potential energy. It is easy to show that the 
variance(~2) 

cr 2 = <(cp-~p)2}  (1.9) 
Gp 

diverges as P ~ oe. Herman et al. have shown that a Virial theorem applies 
and that the energy estimator (12) 

~VlR 1 P [ 1 OV(x,)~ =~,Y~I= V(x')+zX'--gU-~, J (1.10) 

does not suffer from these problems. Bartholomew and Berne (13) have 
shown that similar problems arise in the simulation of a quantum 
mechanical lattice theory at fixed volume and temperature. 

The question of convergence must be addressed. It is important to 
realize that different properties converge differently as P is varied. For 
example, for a harmonic oscillator the Helmholtz free energy converges 
much more rapidly with P than does the internal energy. 

Equation (1) can also be cast in the form 

Qp=f dp, ..... dpp f dXl,...,dxpexpE--HHe,] (1.11) 
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where 

ge~= + ~p(Xl ..... xp; fl) (1.12) 
t = l  

Integration over (p~,.. . ,  P e )  shows that with the proper choice of m' we 
recover (1.1). In fact m' can be adjusted for convenience. This offers a dif- 
ferent method for simulating quantum systems. The effective Hamiltonian, 
Hen, gives rise to classical equations of motion 

Yet = ~? Herr /@ , t = 1,..., P 

P ,  = - O H e t r / O x ,  ( 1.13 ) 

This suggests that classical MD methods can be used to simulate the 
equilibrium properties of quantum systems. ~1~ Starting with a given state 
(Xl,..., xe, pl,..., Pc) one integrates the equations of motion numerically. If 
the system is ergodic, averages of estimators over these ergodic trajectories 
gives corresponding thermodynamic properties. The Hamiltonian flow con- 
serves energy. Thus one ages the system as in classical MD by scaling the 
velocities until the average kinetic energy is (p/2)kT. 

There is one major problem with this approach. Hall and Berne ~14) 
have shown that for large P the Hamiltonian system will be in the KAM 
regime and the dynamical system will very likely be nonergodic. These 
authors suggest the following method for circumventing this problem. A 
classical trajectory is generated for a number of classical time steps after 
which new momenta are sampled from the Maxwell distribution. This 
ensures the sampling of all important regions of phase space. 

It is important to recognize that the classical trajectories have nothing 
to do with the real dynamics of a quantum system. The dynamics in this 
isomorphic system simply provide a simple algorithm for simulating the 
equilibrium properties of the system. How then can one simulate the real 
time dynamics of a quantum system? This is a very difficult problem. We 
have made some progress toward the goal of determining two-point time- 
correlation functions using Monte Carlo methodsJ jS-~v) This makes 
possible the determination of spectral line shapes and transport properties 
in condensed systems. 

In this lecture I will outline two methods for simulating the real time 
decay of two-point time-correlation functions, omitting details. The 
interested reader should consult the references. I will also present one of 
many equilibrium studies made by my group, namely, that of a single 
excess electon dissolved in an He fluid of the atoms with which it interacts 
through a pseudopotential. It is shown that at low fluid densities the elec- 
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tron is delocalized whereas at high fluid densities it is localized in a bubble- 
like state. 

2. T I M E - C O R R E L A T I O N  F U N C T I O N S  IN Q U A N T U M  S Y S T E M S  

Time-correlation functions play a central role in the theory of dynamic 
processes in many-body systems. (18'19) Transport properties, chemical reac- 
tion rate constants, spectroscopic line shapes, and neutron and light scat- 
tering spectra can all be related to well-defined time-correlation functions. 
In classical many-body systems, Hamiltonian dynamics or stochastic 
dynamics provide a basis for simulating time-correlation functions. Unfor- 
tunately, the calculation of these functions in quantum systems is a for- 
midable problem. In this paper we present a method for calculating time- 
correlation functions in quantum and mixed quantum classical systems 
based on path integral Monte Carlo techniques. 

Equilibrium properties of the quantum system can be obtained by 
solving the equivalent classical problem using standard numerical techni- 
ques (e.g., Monte Carlo and MD) as reviewed above. This formulation of 
the density matrix, which tacitly assumes that paths that result from 
exchanging two or more particles can be ignored, has now been suc- 
cessfully applied to the calculation of the equilibrium properties of several 
systems. Extending this procedure to calculate time-correlation functions 
necessitates inclusion of paths with weights that are nonpositive in charac- 
ter. This arises because in the expression for time-correlation functions 
both imaginary (thermal) times and real times are simulataneously present. 
Direct application of Monte Carlo leads to large fluctuations and thereby 
to very inaccurate results. We have suggested two different methods for cir- 
cumventing this problem. (15-17) In one method one defines a symmetrized 
time correlation that lends itself to direct PIMC or PIMD simulation. (16'17) 
In the second method we simulate the system using imaginary-time 
propagators only, and the real-time behavior can then be inferred by 
analytic continuation. (15) This is very similar to the analytic continuation 
used to determine properties of real-time Green's functions in N-body 
quantum systems from the knowledge of the corresponding imaginary-time 
(finite temperature) Green's functions. (2~ 

It is well-known from linear response theory that the response of a 
system to a weak external field can be expressed in terms of a time- 
correlation function of a dynamical property of the system. (18'~9) For exam- 
ple, the infrared absorption spectra is explicable in terms of the 
dipole~tipole correlation function, and the translational diffusion coef- 
ficient is related to the velocity autocorrelation function, etc. In this section 
we provide a general method to calculate the autocorrelation function 

822/43/5-6-13 
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( A ( t ) A ( O ) )  where A can, in principle, be any quantum mechanical 
operator representing the N-body system. To be specific, let us consider a 
many-body system consisting of N particles. The Hamiltonian for the 
system is taken to be 

H =  + U({ri}) 
i=1 

(2.1) 

where Pi is the momentum of the ith particle, U({ri}) is the potential of 
interaction between the N particles, and {ri} denotes the collection of all 
the coordinates of the many-body system. 

Consider the two functions 

and 

CAB(t) = Q -  1 tr[e-/3t4Aemt/hBe m,/h] 

GAB(t)= Q 1 tr Ae roBe-m* 

(2.2) 

(2.3) 

where t is the Minkowski (real) time and ~ = (ill2 - it/h) is a complex time. 
It is easily shown (16) that GAB(oo)=exp(-flhco/2)CAB(O0) SO that CAB(t)' 
can be obtained from GAB(t) by Fourier inversion. If A and B are position- 
dependent operators, then in the coordinate representation 

GAB(t)=Q -1 f dx f dx' A(x) B(x') I(x[ e - m [ x ' ) [  2 (2.4) 

so that we need only determine the Green's operator (xl e - m  Ix').  Only 
for autocorrelation functions is GAA(t) an even real function of time. In a 
previous paper (21) we showed how such operators can be evaluated using 
numerical matrix multiplication together with the short time 
approximations. 

As an example, we calculate the diple~dipole correlation function of a 
proton moving in a bistable potential (see Ref. 16). It is important to note 
that we are implicitly treating all bound states. This models a proton 
tunneling in H202 at a temperature of 10 K. For the dipole operator we 
take /~(q)=/~o tan h(~q) where po = 1, and 1/~ =0.1 Au is much smaller 
than the width of the potential. 

If only the two lowest states were to contribute at 10 K, G . . ( t ) =  
Q-11111212 exp[ - f l (Eo  + E1)/2] cos[Aco) t], where /112 is the transition 
moment and Ao) = (El - Eo)/h is the tunnel splitting. In Fig. 1 we compare 
the simulation using N M M  (21) with ( n = 6 , 9 , 1 1 )  with the two-state 
approximation. This is equivalent to a discretized path integral in the 
primitive algorithm with P = 64,512 and 2048, respectively. We note that a 
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Fig. 1. The correlation function Gu~(t) vs time for a model of protonic tunneling in H 2 0  2 at 
T =  10K. The solid curve represents the analytical time dependence determined using the two 
lowest states (frequency splitting, A~o = 4.87K). The curves - - - ,  . . . . .  , .... represent Gut,(t ) 
calculated using discretized path integrals with P = 64, 512, and 2048, respectively�9 The time is 
given in reduced units of (Am) t, and Guu(t ) is given in atomic units. 

large chain is required for good convergence. The time corresponds to eight 
periods. It is important to note that a similar evaluation of Cuu(t) [cf. 
(2.2)] leads to numerical instabilities even at short times. 

This study shows that it would be inadvisable to use Monte Carlo 
methods to evaluate C,~(t). On the other hand, such methods should 
be stable in the direct evaluation of Gu,(t). This can be appreciated by 
studying the explicit path integral form of GAB(t) 

G~B(t) _ S dxl ..... dx2p A(xa) B(xe+ l) P(Xl,..., X2P) m(xl ..... x2e) (2.5) 
I dxI ,'", dx2p P(xl,..., x2e) W(xl ,..., X2e) 

where P(xl,...,x2e) is the Monte Carlo sampling function 
denominator insures normalization). 

(and the 
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m2p2 ,~pa/2 
P(xl ..... x2p)=\zh2(~2hZ +4t2), ] exp[-flq>(xl ..... xze)] (2.6a) 

2el  mP (xj_xj+l) 2 1  ] 
~b(xl,..., x2p)= Z h2(/72~-5~_4t2 ) +~-fi V(xj) (2.6b) 

j = l  

and where W is 

W[xi,..., x2e] = e x p [ -  itO(Xl ..... x2e)] 

s ~ 2mP 
=1 [(h2fl 2 + 4t2) [(xj-xj+ 

, } P [ V(x j ) -  V(xj+e)] (2.7b) 

The basic approach is to sample the configurations (xl ..... Xze) from 
(2.6), evaluate A(xl) B(xe+ 1), and weight its contribution by If(x1,..., Xzp). 
Values of W must also be evaluated so that the denominator in (2.5) can 
be calculated. Because I f  involves a phase factor that depends on the dif- 
ferences between functions of the sampled configurations, it is expected that 
cancellation will result and that the average will be much more stable than 
would be the case for a direct attack on CAB(t). This is borne out in the 
N M M  study given in Fig. 1. Nevertheless, as t ~ 0% the harmonic force 
constant [cf. (2.6b)] decreases, the polymer becomes delocalized, and the 
cancellation is less, with comcommitant large phase fluctuations. When 
there is rapid damping by a bath or only short-time information is 
required, the phase fluctuations do not cause problems. For nondissipative 
systems which must be followed for short times, more accurate high tem- 
perature approximations for the Greens operator in (2.4) must be 
employed. Recently we have found that by using a harmonic oscillator 
reference system with the exact density matrix it will be possible to use this 
method for nondissipative systems. Recently Behrman and Wolynes has 
successfully used this method to study real-time correlation functions in a 
two-level tunneling system coupled to a harmonic bath with an Ohmic 
density of states. ~48) 

This direct method can also be used to determine electronic 
absorption and emission spectra at finite temperatures. (17) This offers a 
simple and more accurate alternative to wavepacket dynamics. (22) 

In the electric dipole Franck-Condon approximation the cross section 
corresponding to a transition from electronic state 1i) to I f ) ,  given an 
equilibrium thermal distribution of the vibrational states in l i) ,  is 

cr~(~) = (2rc/3hc) ~oE~(~o) (2.8) 

(2.7a) 

, ) 2 -  ( x j + p - x i + p + l ) ]  2 
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where 

and 

C~(co) = - -  dt exp(icot) C~(t) (2.9) 
o0  

C~(t) = tr p(~ exp(iHft/h) #j;.(R) exp( - i H i t / h  ) (2.10) 

and where the transition dipole moment #~r(R) depends on the internal 
nuclear coordinates R, Hi, and H s are, respectively, the Hamiltonians of 
the electronic potential surfaces 1i) and l f ) ,  P(~ 
tr exp( - flHi) is the density operator for the rot vib states on the electronic 
surface 1i), f l=  (kT) -~ where k is Boltzmann's constant and T is the tem- 
perature, and tr( ..... ) denotes the trace over the rot-vib states. 

Following the approach presented previously we introduce the 
function 

Gif(t ) = tr #~(R) . exp( - -Hfr )  #~u(R) exp( -Her* )  (2.11) 

where r = (�89 fl - it/h and r* is the complex conjugate of r. It can be shown 
that C~r(t ) and Gr satisfy the relationship 

C~(t) = G~f(t-  �89 (2.12) 

and, consequently, that the Fourier transforms C,y(co) and G,f(co) of Cr 
and G~r(t), respectively, are related by 

C~(co) = exp(flhco/2) G~(co) (2.13) 

As discussed before, C~(t) is difficult to determine whereas G~(t) can be 
determined directly by path-integral techniques. To proceed we express 
Gr in the position representation 

G (t) = dR' f dR .,f(R'). . ,f(R) 

x (RI e x p ( - H f r ) I R ' ) ( R ' I  e x p ( - H i r * ) ] R )  (2.14) 

In previous papers we showed how the Greens operators, 
(R] e x p ( - H r ) I R ' ) ,  can be determined using an iterative scheme (NMM) 
starting with the short-time (semiclassical) approximation. (21,17) Once these 
propagators are determined it is a simple matter to evaluate the spectrum 
for any function, p~(R), so that the Condon approximation, 
#,s(R) = pC(Re) need not be made (here Re are the equilibrium positions of 
the nuclei). 

This method has been used to calculate the electronic absorption and 
emission spectra in a model system with considerable success. (See Ref. 17 
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for details.) We believe that it will be particularly useful for the simulation 
of photochemical reactions. 

Another method for calculating quantum mechanical time-correlation 
functions appears promising. (15) In this method the time-correlation 
function is calculated by Monte Carlo techniques at several values along 
the pure imaginary axis of the complex time plane. Using the periodicity of 
the Euclidean time-correlation function, the real-time behavior is inferred 
by analytic continuation. This is very similar to the analytic continuation 
used to determine properties of real-time Greens functions in N-body quan- 
tum systems from knowledge of the corresponding imaginary-time Greens 
functions. 

The one-sided time correlation functions are defined by 

F>(t) = ( A ( t ) A ( O ) ) = ( 1 / Q ) t r e - ~ 1 4 A ( t ) A ( O )  t > 0  
(2.15) 

F < ( t ) = ( A ( O ) A ( t ) ) = ( 1 / Q ) t r e - ~ n A ( O ) A ( t )  t < 0  

where Q = tr e an. The cyclic invariance of the trace gives rise to 

F> (t) = F< (t + i~h) (2.16) 

or, equivalently, to detailed balance 

f>  (o)) = e~h~f < (o9) (2.17) 

where f~  (~o) are Fourier transforms of F~ (t), respectively. 
Let 2 denote a point on the pure imaginary axis of the complex time 

such that 0~<2~</~h. Then for t =  -i2,  (2.15) can be expressed as 

r<( - - i2 )  = (l/Q) tr p(fl - 2) Ap(2) A (2.18) 

where p (y )=e  ~n is the canonical density operator at reciprocal tem- 
perature 7-1. In the position representation this can be expressed as 

F>(-- i2)  =~1 f,..., f dXl dX,l dX2dxi p(X1, Xtl; fl__ 2) 

x (X'l[ A Ix2) p(x2,  x'2; J,)(x;] A [xl ) (2.19) 

. . . . .  2) can now be The density matrices p ( x l , x l , f l - / O  and p(xz ,  x2, 
expressed as path integrals in the usual way 

N 

p(Xl, Xtl;fl-- 2)= f dx 2 ..... dXN1- I (x,l  e 
(~ 2)H/N Ixt+I) (2.20a) 

t = l  
N + P + 2  P 

p(X2,  X2,'. 2 ) =  / dXN+I ..... dXN+p 
J 

l-I (x , I  e xI-i/e i x t + l )  (2.20b) 
t=N+2 
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where x u + l = x ] ,  XN+2=X2, and XN+P+2=Xt2, and where the matrix 
elements (x,] e -aIsle ]Xt+l) are replaced by their short-time expansions 

[ mL ]1/2 [ mL 
(x,I e a../L iX,+l}=Lz~h2B, j e x p -  2---~-7 (x, - x,+1)2 

+ ~-s [ V(x,) + V(xt +1)] (2.21) 

Substitution of (2.21) into (2.20a) and (2.20b) gives a path integral 
expression for F > ( - i 2 ) ,  which can be evaluated by direct Monte Carlo 
simulation for different values of 2. 

To obtain the real-time correlation function F> (t) or, equivalently, its 
Fourier transform, we note that because F > ( 0 ) =  F> (- i f lh) ,  F>(t)  can be 
expanded in a Fourier series 

F > ( t ) = + ~ e  iZn~f(Z,) (2.22) 

where Z ,  = 2rm/(- iflh) and it = 2. The Fourier coefficients f(Zn) are 

f ( Z , ) =  ~ f~hd2 exp(Z, 2 )F> ( -  i2) (2.23) 

where F> ( -  i2) is determined by PIMC as described above. Now it can be 
shown that 

f 
+oo do~ Z"(co) 

f ( z )=  oo 2~ z -  (2.24) 

is analytic off the real axis and has a branch cut, such that X"(co) is given 
by the discontinuity across the real axis 

Z"(og) = lira i[f(oo + ig) - f(~o - i~)] (2.25) 
e ~ 0  

Here X"(co) is the imaginary part of the susceptibility. Since we can deter- 
minef(z  = z,) on the imaginary axis it is possible to analytically continue it 
into the complex plane. A natural method for performing this analytical 
continuation is to use the Pad6 approximant scheme. If the values of 
f ( Z , ) = f ,  are known for n =  1 to n = N + M +  1 values, then f (z)  can be 
represented by the quotient 

f (Z )  = [N, M] = ~ biP,(Z qo(Z) + ciq,(Z 
i = 0  i = 1  
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The coefficients bi and ci can be calculated from the N + M + 1 values of 
(Zn). The functions Pi(Z) and q~(Z) are chosen appropriately for the 
problem being under consideration. This procedure ItS) can be summarized: 

(1) Evaluate F>(t) along the pure imaginary-time axis 

(2) Calculate the Fourier coefficients f(Zn) 
(3) Analytically continue f (Z)  using Pad6 approximants 

(4) Evaluate Z"(~) from f (Z )  

It should be noted that transport coefficients can be directly related to 
f ( z  = 0). 

So far this method has been applied successfuly to very simple 
systems. ~tS) It has yet to be shown that it is useful for complex systems. 

3. B E H A V I O R  OF A N  ELECTRON IN H E L I U M  GAS 

The transport properties of an electron in dense gas have been the sub- 
ject of much experimental and theoretical investigation. In helium, as the 
gas density increases beyond a certain point, the electron mobility is obser- 
ved to drop faster than the classical rate. While there is not a pure 
localization phase transition, a change in the dominant character of the 
system seems clear. 

Feynman,/23/Ferrell,/24) and Kuper ~25) have suggested that at high He 
density the electron is trapped inside a bubble. Hiroike et al. ~26) have 
calculated the radius and energy of this bubble using a soft electron-He 
pseudopotential. The radius of the bubble is determined by a compromise 
between the kinetic energy which delocalizes the electron, the repulsive 
electron-He potential which localizes the electron, and the free energy 
required to form the He-bubble interface. 

We report the results of a path-integral Monte Carlo simulation of an 
electron in dense He gas as a function of He density using a realistic, "soft" 
electron-He interactionJ 5) Comparison is made with hard-sphere models 
simulated elsewhere. ~27 29) We perform our study at 77.6K to make contact 
with the electric-mobility data of Bartels <3~ and Schwartz. ~31'32) Our results 
seem to be consistent with bubble formation. 

The Euclidean action for the system is 

~ -  2 - ~  ( x , -  x,+~) + f i  V, Ho(Iu--x~[) 
t = l  j = l  t = l  

+ ~ V.o Ho(Iu-r~I) 
j > i  

(3A) 
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where r~,..., r N give the position of N HE atoms, x~,..., xe  give the coor- 
dinates of the P-point discretized path of the electron, f l=  (ks  T) -~, 
Ve He(lrj--x~l) gives the potential between the discrete electron point and 
the j th He atom, and Vse He(Ir i -  rkl) is the interaction potential between 
the jth and the kth He atoms. The first two terms in (3.1) represent the 
potential energy of a classical cyclic chain polymer containing particles of 
mass me with nearest-neighbor harmonic bonds. Each bead interacts with 
each He atom. In the simulation we take VHe He(r) to be a Lennard-Jones 
(LJ) 12-6 potential with a = 2 . 5 7 6 ~  and e =  10.22 K. Ve-Ho(Irj--Xtl) is 
given by the pseudopotential of Kestner et al. (33) (This potential is valid 
only at zero momentum, but we do not expect this to be a relativity large 
source of error.) The potential is maximum (0.32AU) at a distance 
r =0.61 ~ and drops by one-half at r =  1.1 ~. 

The simulation proceeds as follows. The first term on the right-hand 
side of (3.1) can be expressed as fl~e = ~k  2kQk2/2, where Qk are the nor- 
mal modes of the chain. We first sample the full set of ( k r  normal 
modes, the step size of mode k being proportional to 2k-  ~/2. The Cartesian 
coordinates are then calculated and the move accepted or rejected using the 
Monte Carlo algorithm (3) for the full system. The zero-mode translation is 
made separately. Each He atom is moved separately for the x, y, and z 
coordinates. Spherical bookkeeping is used. 

For our study, the polymer chain has P = 100 beads and the system 
contains N = 5 1 2  helium atoms. For  many runs, an FPS164 Attached 
Processor (AP) was used; one pass at a helium density of n = 1 x 1022 cm-3 
takes 4.8 s. At each density n from 8000 to 15000 passes were made. 
Additionally, we made three long runs at n=0 .9 ,  1.05, and 
1.25 • 1022 cm -3 of 75000 passes on the Cray 1; we obtained a factor 8.7 
improvement in time over the AP. 

The radial distribution function of He atoms around the electron 
barycenter 

ge--He(r)~-I(~(r--rHe"~-'~t=l 
is determined; this latter quantity is choosen because it can reflect whether 
or not an electron bubble exists. The nonbarycentric, true distribution 
function, less suited to signaling bubble formation (where there is no trans- 
lational invariance) was found not to be as sensitive to changes in density. 
Also determined are the imaginary-time correlation functions of the form 

R, ( t - -  t') ~ _ ( [x , - -  xcl2)  1/2 (3.3) 

at He density n. These are the root-mean-square displacements between 
two polymer points separated by a time ( t - t ' ) .  R.(flh/2) represents the 
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"diameter" of the polymer chain; this quantity is discussed by Chandler et 
a1.{27,28) 

In the simulations reported here, the box edge length was usually 
taken to be at least twice the diameter of the polymer. The action, ~, was 
monitored to determine when the system equilibrated. Uncertainties for the 
quantities measured were determined by blocking the data in successively 
larger bins until the errors appeared uncorrelated. 

Figure 2 shows Rn(t) vs t for various He densities [Ro(flh/2) = 29.2 ~] .  
As the density increases the maximum at t = flh/2 decreases and the curve 
levels off faster; the polymer chain goes from a free, extended state to a 
compact, quasi-localized state showing signs of ground-state 
dominance. {27,28)  

Figure 3 shows R,(flh/2) vs density n. Initially the decrease is slow. 
The most rapid decrease is around n = 1.0 x 10 22 cm 3 (corresponding to 
na3= 0.17, where a is the LJ parameter); there is a slower decrease at high 

1.0 

r 

o 
r r  

o,5 

0 
0 0.5 1.0 

t (j~~) 
Fig. 2. F o r  the e lec t ron- in-he l ium system at  77.6K, the cor re la t ion  funct ion R,( t )  vs t ime t 
for He densi t ies  n = 0 ,  0.9, 1.05, 1.25 (all on  the Cray) ,  and  2.0 (on the AP)  • 1022 cm -3 scaled 

to the zero-densi ty  value  Ro(flh/2); a is the H e - H e  LJ pa ramete r .  The e r ror  bars  shown  are 
typical  ( the ones for n = 2.0 x 1022 cm -3 are too  smal l  to show).  
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q~. 0.8 

o 0.6 

0.4 qa. 

0.2 

I I I I 

0.5 1.0 1.5 2.0 

n (1022cm 3 ) 

Fig. 3. The electron polymer extent Rn(~h/2) scaled to the zero-density value vs density n. 
Cray data are plotted as closed circles, AP data as open circles. The curve is drawn to guide 
the eye. 

densities. For the AP points, error bars cannot be as confidently deter- 
mined because there are fewer passes. We show these data without error 
bars, the scatter in the points themselves giving a measure of error. One 
should not read fine structure into the Rn(~h/2) vs n curve; the curve 
drawn to guide the eye shows the general trend of the data. The Cray runs 
give high-precision data showing more specifically the shape of the curve 
and act as a standard for the AP runs. 

At n =  1.25x 1022cm -3, the polymer behaved as if the electron 
were localized for 4 x 104 passes with Rn(~h/2)/Ro(~h/2)= 0.44 +_ 0.02 and 
then shifted to a quasi-free state for about  10 4 passes with 
Rn(~h/2)/Ro(~h/2)= 1.02_+0.01. This shows that the electron enters a 
region where the gas is locally rarefied and remains there metastably. 

We may extract a bubble radius, R =  ( �89 ( 4 +  1)/~ at high 
density. This is in excellent agreement with the value R ~ 4.2/~ given by 
Jahnke and Silver (34) for He gas at a temperature T =  77.3 K, nearly the 
temperature used in our simulation. For  liquid He at T =  0 K, Hiroike et 
al. (28) concluded R = 12.4 ~. For  the gas at T ~ 4 . 2  K, R ,,~ 16/~ by Levine 
and Sanders, (35/ R ~ 1 6 ~  by Young, (36/ R ~ ( 6 - 1 5 ) / ~  by Eggarter and 
Cohen, (37) R ~ 1 4 ~  by Eggarter,(38) R ~ t 6 ~  by Schwarz. (32) While 
Jahnke and Silver considered their value low given the liquid He values, it 
is quite reasonable considering that the bubble radius and other quantum- 
mechanical wavelengths will generally scale as 1/T 1/2. 

Our decrease in Rn(~h/2) with n is slower than that for a rigid, dis- 
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Fig. 4. The electron-helium radial-distribution function ge_He(r) VS distance r taken with 
respect to the polymer barycenter at four densities: n = 0 . 9 ,  1.05, 1.25, and 2.0x 1022 cm -3. 
(a-c) Cray data; (d) AP data. a is the He-He  LJ parameter. The error bars shown are typical�9 

ordered configuration of hard spheres considered by Sprik, Klein, and 
Chandler. (29l This is very likely a result of their much greater implied tem- 
perature which would result in considerable density-scale compression. For  
a reasonable value of the electron-He distance of closest approach, the 
implied temperature is several hundred degrees/ Further, the general 
shapes of the curves are different, there again being the absence of a 
shoulder. 

Figure 4 shows the electron-He radial distribution functions ge-He(r) 
taken from the polymer barycenter at four densities. 4 As the density 
increases, He atoms are excluded from the volume occupied by the 
polymer, resulting in the bubble. At n = 2.0 x 10 22 cm 3, we may again read 
off a bubble radius of R ~  (5 + 1 ) ~  consistent with our earlier deter- 
mination. 

Note that there may be "asynchronization" of static and dynamic 
properties of the system. The data of Barrels (3~ show a much stronger 
decrease in mobility by n = 0.5 x 10 22 cm 3 than any of the static quantities 

3In Fig. 5 of Ref. 27, there is a 35% decrease in R(flh/2) from n = 0  to 1.05• 1022cm -3, 
taking the electron He distance of closest approach a/2,~ 1.1/~; the temperature for our 
problem is 548~ 

4 We do not  at tempt to smooth  these data  since only one electron is being considered. 



Path Integral Monte Carlo Methods 927 

measured here would indicate; there seems to be a "lag" between static and 
dynamic measurements. This implication holds also for Ref. 28. As the 
statics are already difficult, the dynamics will not be easily addressed. 

D I S C U S S I O N  

Path integral methods are indeed useful for simulating equilibrium 
systems. Several problems arise in connection with these methods. In 
addition to the problems discussed explicitly in this paper, there is the 
question of convergence. At a given temperature T, P must be taken large 
enough such that the results do not change significantly for larger P. If P is 
very large the force constants in (1.4) become so large that only very small 
particle moves are accepted. One is then dealing with a very stiff polymer 
chain that relaxes very slowly. Several strategies have been adopted to 
handle this problem. 

(1) By transforming the kinetic energy part of the action to normal 
modes, all modes can be sampled efficiently and, moreover, the zero 
frequency mode (corresponding to the translation of the whole 
polymer) can be sampled such that covergence is much more rapid. (5~ 

(2) Fourier path integral techniques can be exploited. ~39~ If one truncates 
the number of normal modes, this method is equivalent to the normal 
mode approach. Recently an algorithm has been discussed that treats 
the low frequency modes exactly but treats the high frequency modes 
in a kind of mean field theory. This method looks promising. (4~ 

(3) P can be reduced by using a higher order short-time 
approximation (41) or by using renormalization group techniques to 
generate an effective potential at the polymer beads. (44) In some cases 
P can be reduced by umbrella sampling techniques. (43~ 

(4) Staging algorithms have proven useful. (4) In a staging algorithm one 
moves a primary polymer chain with relatively small P as though it 
represents a free quantum particle and accepts or rejects the move by 
introducing secondary chains between each Euclidean time-adjacent 
pair of beads. 

All of these methods have proven useful in different systems. For 
example, staging (44) appears to be particularly useful in the study of dilute 
systems with strong short-range repulsive potentials. Nevertheless, it should 
not be assumed that because it is particularly effective in treating one kind 
of system it is naturally superior to other methods when applied to another 
system. It is clear that much remains to be learned about the simulation of 
equilibrium systems. 
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Time-correlation functions involve even more difficult problems. As 
pointed out in the text, for large t the force constants get small and the 
phase fluctuations get large. To avoid this one can use exact local harmonic 
propagators ~45) as a reference system (or other reference systems). This 
leads to much smaller phase fluctuations. We are currently experimenting 
with these techniques. (45) The general problem of determining response 
functions of many-body systems still remains an active field filled with 
interesting problems. 

In this paper I tried to touch on some of the features of simulating 
quantum systems. This review is not meant to be comprehensive. 
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